Computational Predictions for Single Chain Chalcogenide-Based One-Dimensional Materials

نویسندگان

  • Blair Tuttle
  • Saeed Alhassan
  • Sokrates Pantelides
چکیده

Exfoliation of multilayered materials has led to an abundance of new two-dimensional (2D) materials and to their fabrication by other means. These materials have shown exceptional promise for many applications. In a similar fashion, we can envision starting with crystalline polymeric (multichain) materials and exfoliate single-chain, one-dimensional (1D) materials that may also prove useful. We use electronic structure methods to elucidate the properties of such 1D materials: individual chains of chalcogens, of silicon dichalcogenides and of sulfur nitrides. The results indicate reasonable exfoliation energies in the case of polymeric three-dimensional (3D) materials. Quantum confinement effects lead to large band gaps and large exciton binding energies. The effects of strain are quantified and heterojunction band offsets are determined. Possible applications would entail 1D materials on 3D or 2D substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation

One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of mor...

متن کامل

Surface effects on electronic transport of 2D chalcogenide thin films and nanostructures

The renewed interest in two-dimensional materials, particularly transition metal dichalcogenides, has been explosive, evident in a number of review and perspective articles on the topic. Our ability to synthesize and study these 2D materials down to a single layer and to stack them to form van der Waals heterostructures opens up a wide range of possibilities from fundamental studies of nanoscal...

متن کامل

Dynamics of Electrons and Excitons in Nanoclusters and Molecules

The development of efficient and economic photovoltaic (PV) systems harvesting solar energy is one of the grand challenges for engineering and scientific researchers. The theoretical conversion limit of a single-junction solar cell is 31% according to Shockley and Queisser (SQ), which the most advanced single-junction PV devices are approaching. Thus it is important to develop new methods and d...

متن کامل

Computational Study of Charge conducting Spacer molecules in Lead Chalcogenide Quantum dots

Q uantum dots (nanocrystals) have found applications in transistors, medical imaging,and solar cells, since they have band gaps that can be tuned into the far infrared region. This tuning is typically difficult to achieve with traditional semiconductor materials. The band gap tuning and self-assembly into a variety of large two-dimensional & three-dimensional superlattices makes them ideally su...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017